Sistem persamaan linear 3 variabel, merupakan himpunan 3 buah persamaan dengan variabel sebanyak 3. Bentuk ini satu tingkat lebih rumit dibandingkan sistem persamaan linear 2 variabel
Metoda meyelesaikan persamaan
1. Metoda Eliminasi
2. Metoda subtitusi
3. Metoda determinan
4. Metoda matriks
5. Metoda operasi baris elementer
Metoda Eliminasi
Supaya lebih mudah langsung saja kita masuk ke contoh-contoh
Contoh soal 1 :
2x + 3y – z = 20
3x + 2y + z = 20
x + 4y + 2z = 15
Jawab :
Ketiga persamaan bisa kita beri nama persamaan (1), (2), dan (3)
2x + 3y – z = 20 ………………………..(1)
3x + 2y + z = 20 ………………………..(2)
x + 4y + 2z = 15 ………………………..(3)
Sistem persamaan ini harus kita sederhanakan menjadi sistem persamaan linear 2 variabel. Untuk itu kita eliminasi variabel z
Sekarang persamaan (1) dan (2) kita jumlahkan
2x + 3y – z = 20
3x + 2y + z = 20_____ +
5x + 5y = 40
x + y = 8 ………………….(4)
Selanjutnya persamaan (2) dikali (2) dan persamaan (3) dikali (1) sehingga diperoleh
6x + 4y + 2z = 40
x + 4y + 2z = 15____ _
5x = 25
x = 5
Nilai x ini kita subtitusi ke persamaan (4) sehingga
x + y = 8
5 + y = 8
y = 3
selanjutnya nilai x dan y yang ada kita subtitusikan ke persamaan (2)
3x + 2y + z = 20
3.5 + 2.3 + z = 20
15 + 6 + z = 20
z = -1
Jadi, himpunan penyelesaiannya adalah {(5, 3, -1)}
Contoh soal 2 :
Tentukan himpunan penyelesaian dari
3x + 4y – 3z = 3
2x – y + 4z = 21
5x + 2y + 6z = 46
Jawab :
Agar lebih mudah, ketiga persamaan kita beri nama (1), (2), dan (3)
3x + 4y – 3z = 3 …………………………….(1)
2x – y + 4z = 21 …………………………….(2)
5x + 2y + 6z = 46 …………………………….(3)
Selanjutnya persamaan (1) dikali 1 dan persamaan (2) dikali 4, sehingga diperoleh
3x + 4y – 3z = 3 |1| → 3x + 4y – 3z = 3
2x – y + 4z = 21 |4| → 8x – 4y+16z = 84 +
. 11x + 13z = 87 ……………..(4)
Berikutnya persamaan (3) dikali 1 dan persamaan (2) dikali 2, sehingga diperoleh
5x + 2y + 6z = 46 |1| → 5x + 2y + 6z = 46
2x – y + 4z = 21 |2| → 4x – 2y + 8z = 42 +
. 9x + 14z = 88 …………..(5)
Sekarang persamaan (5) dikali 11 dan persamaan (4) dikali 9 sehingga diperoleh
9x + 14z = 88 |11| 99x +154z = 968
11x + 13z = 87 |9| 99x + 117z=783 _
. 37z = 185
. z = 5
Nilai z=5 kita subtitusi ke persamaan (4)
11x + 13z = 87
11x + 13.5 = 87
11x + 65 = 87
11x = 22
x = 2
Nilai x=2 dan z=5 kita subtitusikan ke persamaan (3) sehingga
KEBIJAKAN PEMERINTAH DALAM BIDANG EKONOMI A. Ekonomi Makro dan Ekonomi Mikro Secara garis besar ilmu ekonomi dapat dikategorikan menjadi...
Recent Posts
Unordered List
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aliquam tincidunt mauris eu risus.
Vestibulum auctor dapibus neque.
Text Widget
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation test link ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate another link velit esse cillum dolore eu fugiat nulla pariatur.
Tidak ada komentar:
Posting Komentar